Modelling of Laser-Plasma Interaction on Hydrodynamic Scales:

Physics Development and Code Validation

S. Weber,!'?* G. Riazuelo,? P. Michel,*? R. Loubere,* F.
Walraet,? V. T. Tikhonchuk,! J. Ovadia,” and G. Bonnaud®

ICentre Lasers Intenses el Applications,

UMR 5107 CNRS - Université Bordeauz 1 - CEA,

Uniwversité Bordeauz 1, 33405 Talence Cedex, France

2Département de Physique Théorique et Appliquée,
CEA/DIF, BP 12, 91680 Bruyéres-le-Chatel Cedex, France
?Laboratoire pour [’Utilisation des Lasers Intenses UMR 7605

CNRS - Ecole Polytechnique - CEA - Université Paris VI,
Ecole Polytechnique, 91128 Palaiseau Cedex, France
4Los Alamos National Laboratory, Group T7, Los Alamos, NM 87544, USA
*CEA/DAM/CESTA/DEV /SIS, 33114 Le Barp, France
CEA/DSE, 75752 Paris, France
(Dated: May 28, 2003)



Abstract

The forthcoming laser installations related to inertial confinement fusion, LMJ (France) and NIF
(USA), require multidimensional numerical simulation tools for interpreting current experimental
data and to perform predictive modelling for future experiments. Simulations of macroscopic
plasma volumes of the order of 1 mm® and laser exposure times of the order of hundreds of ps are
necessary.

We present a new code for laser-plasma interaction which contains the relevant physics. The laser
field is treated in a standard paraxial approximation in three dimensions. The plasma response
is described by a single-fluid, two-temperature, fully non-linear hydrodynamical equations in the
plane transverse to the laser propagation axis. The code also accounts for the dominant nonlocal
transport terms in spectral form originating from a linearized solution to the Fokker-Planck
equation. The simulations of interest lie with conditions as they are encountered in hohlraum
plasmas in the case of indirect drive or the plasma corona for direct drive.

Recent experimental results on plasma-induced smoothing of RPP laser beams are used in order

to validate the code.
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I. INTRODUCTION

A detailed understanding of the interaction of a laser beam with a preformed underdense
plasma is of outstanding interest in the context of inertial confinement fusion (ICF). Due to
the complexity of the interaction process analytical models are only of limited use. Therefore
numerical tools have to be conceived in order to be able to model laser-plasma interaction
(LPI) (Berger et al. [2], Elisseev et al. [9], Hiiller et al. [11], Myatt et al. [15], Pesme et al.
[17]). Much work has been done for conditions where the plasma response can be taken to
be linear and where the specific transport properties of laser-produced plasmas play less of a
role (Elisseev et al. [9], Hiiller et al. [11]). The forthcoming large-scale experiments for ICF
in France (LMJ-Bordeaux) and the USA (NIF-Livermore) require codes which are capable
to simulate the interaction process with a sufficient reliability in order to have the possibility
to do predictive modelling of future experiments. This necessitates that the relevant physics
is taken into account.

Ideally one would like to model the interaction process with first-principle tools such as
Fokker-Planck or particle-in-cell (PIC) methods coupled to the full set of Maxwell’s equa-
tions. Unfortunately these kind of calculations can at present only be done for microscopic
plasma volumes. Hence a certain coarse-graining is necessary and the most promising ap-
proach at present would be to use some hydrodynamic model to describe the plasma. These

kind of plasmas are characterized by the following aspects:

1. mixing of very disparate length-scales. The plasma response takes place at scales
of the order or less than the laser wavelength Ag but the characteristic scale length
of evolution of laser and plasma parameters amounts to several hundreds of laser

wavelengths.

2. long time of simulations. The characteristic time of the plasma response varies in a
very wide range from a few laser periods (in the case of Raman scattering) to thousands

of laser periods for slower processes which involve the ion response.

3. large volume of simulations. The plasma volume to be treated in simulations is of the

3

order of 1 mm?. This is necessary for adequate description of speckle statistics, the

backscattering processes and the nonlinear evolution of speckles.

4. the nonlinear aspect of plasma response can not be neglected. A simple ion-acoustic



wave (IAW) response for self-focusing and the three-wave model for stimulated scat-

tering are of limited use for realistic laser parameters.

5. backscattering processes — the stimulated Raman and Brillouin scattering — have to be
accounted for in a self-consistent picture of the interaction process. They are important
for the energy balance in the target and for the effect of fast electrons on the pellet

compression.

6. nonlocal aspect of the energy transport. For temperatures of several hundreds eV to a
few keV and densities ~ 0.1n. the transport properties can not be described by stan-
dard collisional equations. The transport is neither purely collisional (diffusive fluxes)
nor collisionless (convective fluxes). The plasma is semi-collisional, a state which estab-
lishes itself whenever the characteristic mean-free path (mfp) for electron-ion collisions
is of the order of the gradient scale lengths of the thermodynamic variables (density,
temperature etc.). The consequence is a strongly modified pattern of temperature re-
laxation processes in the plasma. The issue of this so-called non-local transport (NLT)
has been studied extensively in the literature (Alouani-Bibi and Matte [1], Brantov
et al. [3], Bychenkov et al. [7, 8], Luciani et al. [13], Schurtz et al. [18]).

As a whole the contemporary LPI codes are complicated and difficult to validate. The
most promising way is to have at hands simple and clean experiments which reduce the
number of physical effects involved to a minimum and allow to deduce certain global char-
acteristics (e.g. coherence times) which can be compared to the calculations. Once these
codes have been validated in a convincing way, they can then be used to perform predictive
modelling of future experiments (design experiments). Nonlinear hydrodynamic calculations
are particularly time consuming and a full parallelization of such codes is mandatory.

In the following we are presenting a LPI code that has been developed recently on the
base of the code PARAX (Riazuelo and Bonnaud [16]). The most important ingredients
of this code and their implementation are briefly described as well as its first successfull

validation.



II. PRESENTATION OF THE CODE

A. Electromagnetic module

The code is conceived to describe a propagation of a single laser beam in a weakly
inhomogeneous, underdense plasma and the effects of ion density perturbations. For that
it is not necessary to solve the full set of Maxwell equations. The wave equation for the
electric field can be simplified in assuming that the propagation takes place dominantly in
one given direction (here denoted as the z-direction). One assumes that the light which is
linearly polarized in the z-direction, can be characterized by the frequency wp and the wave

vector kg = (wo/c¢)y/1 — neo/n. and that the amplitude is a slowly varying function of space

and time:
E=FE(r,t) exp (L/ ko(,z’)d,z’> . (1)
0
Then the laser amplitude F satisfies the paraxial equation (Feit and Fleck [10], Riazuelo

and Bonnaud [16]) that can be written in the following form:
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Here, n. is the local plasma density and n., the intial plasma density, n. = m.c,wi/e? is the
critical density. V2 = 92 + 05 is the Laplacian in the plane transverse to the direction of
propagation, it describes the diffraction of the propagating laser beam. The factor [1 + (1 +
V2 /k2)Y?]71 takes into account deviations from the exact paraxial equation and allows to
treat an opening angle of the order of 30°. Evidently it can be treated numerically only in
an spectral approach (Feit and Fleck [10]). The term containing the electron-ion collision
frequency v,; takes into account the laser energy losses due to inverse bremsstrahlung.

The paraxial approximation of the laser beam is based on several assumptions: 0, < kq,
0 < wp, and 92 < V2. These conditions are supposed to be satisfied for the cases considered

below.

B. Linearized plasma response

The simplest response of a plasma is due to the ponderomotive force which acts in the

transverse direction. QQuasi-neutrality is assumed and the response describes IAWs propa-



gating in the plane transverse to the propagation direction of the laser beam:

Ne A
(07 + 27,0, — &2V7) In— = Vilpl) . (3)

Neo Cm ;M.

Here, v, is a damping term and the intensity is given as I = ce¢, | £ |? /2. The characteristic
speed of propagation of the density perturbations are determined by the acoustic velocity
cs =/ (ZT. + 3T;)[/m;.

There are two modifications in this equation which go beyond the standard IAW equation.

First is the logarithmic term on the left hand side instead of the linear density perturbation.
This is an ad hoc attempt to extend the equation to the nonlinear case. It prevents unphysical
negative values of n, and reproduces the Boltzmann density depletion in the cavity. Second
is the operator p in front of the ponderomotive force on the right hand side. It is a spectral
operator which takes account of non-local transport properties in the linear response regime

(Brantov et al. [4]):
_L 0.882°/7 N 2.547 )
Pr =5 (kL A)Y™ " 1 45.5Z(kihei)?

Here Z is the charge state of the ion, A; is the mfp for electron-ion collisions and k; the

perpendicular wave number.

C. Nonlinear hydrodynamics

For elevated intensities of the order of 10'* W/cm? and density perturbations above 10%
the plasma response becomes nonlinear. In this case the simple IAW equation (3) has to
be replaced by the full Euler-equations (Loubere [12]). The model used are the single-fluid

(due to quasi-neutrality, n. = Zn;), two-temperature equations:

Omn; = =V, -(nu), 5

O(mmnu) = —Vp, 6

O(nie;) = =V - (ne + pi)u, 7

(5)
(6)
(7)
Oi(neec) = =V (nee. +pe)u. (8)

Here, pi,t = pe + pi is the total plasma pressure, p. = (7. — 1)n.e. is the electron pressure
and p; = (v; — 1) (nie; — m;n;u?/2) is the ion pressure, ¢ denotes the total energy which is
related to the pressure by an equation of state for a given adiabatic coefficient v = ¢,/¢,.

The electron inertia has been neglected in the electron equation of state.



As before the plasma response is taken in the transverse plane only. The hydrodynamics
are solved in Lagrangian form on an unstructured triangular mesh using a discontinuous
Galerkin-type approach which gives a high-precision numerics with little numerical diffusion
and oscillations. In the above equations the coupling to the electromagnetic field (the
ponderomotive force) as well as the transport terms are still missing - they are presented in
the following section.

Figure 1 gives a simple visual impression of how linear and nonlinear response differ for
elevated intensities. Amplitudes and frequency of self-focusing are clearly affected. This is
especially important for density bumps which are severely overestimated in the linear model.
Also the speed of propagation of density perturbations is no longer given by the ion-acoustic
velocity, which is only correct in the initial stage, but will be larger. The dynamics of the

problem changes fundamentally.

III. NON-LOCAL TRANSPORT

A. The properties of non-local transport

Using an approach based on the linearized version of the Fokker-Planck equation a set of
transport coefficients in the context of semi-collisional plasmas has been derived by Brantov
et al. [3], Bychenkov et al. [7]. As mentioned in the introduction, the transport coefficients
are in general a strongly varying function of the product kA.; where however the mfp is given
in the real space. Figure 2 shows the dependence of the electron heat conductivity on the
parameter k.

The mathematical procedure of implementation of the nonlocal transport coefficients in
the code is similar for each term. As an example let us consider at the following simplified

heat equation comprising just the time dependence of the temperature due to the heat flux:

2 V. (k.VT.). (9)

Ne

atTe -

The electron heat conductivity . is known in k-space only, hence the equation has to be
evaluated in k-space itself. As one is above all interested in conditions where the semi-
collisionality dominates one has that the gradient scale length is of the order of the mfp and
therefore the conductivity does not vary much over the gradient. One can therefore assume

ke to be constant locally and approximate the source V - (k. VT,) as k. AT.. A further
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approximation is not to evaluate the convolution sum in k-space as the approach is linearized

anyway. Transforming to Fourier-space then amounts to the following replacement:
V- (KVT) — —k‘Qlika . (10)

It has been assumed as well that the transport is isotropic in the transverse plane and that

one can use the identification k = |/kZ + k2. The change in temperature is then given as:

2 At
5T, = g_FT—l [Fu (kA )k Ty . (11)
Ne

Note that the coefficient @ = n.vr. i1s given in real space. The function f,; is a nonlinear

function of kA.; which can be decomposed as:
fnl(k)\ei) = g(Z)k)\ezh(k)\ez) (12)

with g(7) = (3.26 + 13.67)/(4.2+ Z) giving the charge dependence. If the function h would
be equal to 1 one would simply recover the standard expression for the collisional Spitzer-
Héarm conductivity: £ = ksg = g(Z)nevredei. In the general case the function is not equal
to one and depends strongly on the collisionality of the plasma. It is possible to represent
the function A as a harmonic mean between the strongly collisional and the collisionless

state which gives a good approximation over the whole range of collisionality parameters:

™t = h by (13)
50 + 102 )\

Aol =14 (2K 14

o= () (14)

hpe = 0.1IVZ/X . (15)

Here, X = \/Ek)\m-, h. is the collisional contribution and A, is the non-collisional one.

B. Temperature relaxation in a hot spot

The effect of non-local transport can be easily appreciated by looking at a simple hot-spot
relaxation due to the heat flux into the ambient medium (Senecha et al. [19]). Assuming
a uniform temperature background of 700 eV, a local temperature perturbation of the form
T(r,t=0)=Tyexp(—r?/R*)+700 eV is imposed. The speckle radius R is taken to be 7 ym
and the perturbation amplitude is Ty = 70 eV. For a density of n, = 0.1n. and a charge



state Z = 5 the resulting mfp is A\.; = 2.2 ym and hence of the order of the characteristic
gradient scale length of the perturbation R. For this case the above heat equation can be
solved analytically and the relaxation times of the hot-spot for the collisional regime and
the non-local transport regime can be calculated to give:

3n.R?*  0.028R?
8ksu  vreei(

0.9
= e (1 + 10\/71&&») ~ 1.15 ps. (17)

TSH ~ 0.1 ps, (16)

Here, ((7) = (0.24 + Z)/(4.2 + Z) takes into account the dependence on the charge state.
Obviously for the given, realistic, plasma conditions the relaxation times differ by a factor
10 which implies a strong variation in the plasma response to be expected.
The procedure outlined here for the evaluation of the non-local heat flux applies in exactly

the same way for all the possible transport coefficients and associated transport terms.

C. Non-local Navier-Stokes equations

The resulting transport terms modify the Euler equations such that one obtains a non-

local Navier-Stokes equations which can be written in the standard way as follows:

6tn2- = — V. (niu), (18)
1
du= — u-Vu— ——Vp; — - \ i (19)
;1 Cn:.1m;
1 VA VA
+ V- (nlvu) + _v(ﬂTe) - \Y% <§u + é) [7
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e 3°° u-u © ?)nccy62 3n.c !
2 2 2 Ke
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3 M Ve NeC
2 2
orT;, = — gTiV -u—u-VT;, + 3 V- (mVTZ-) . (21)
n;

In the above equations are some transport terms which are purely local such as the absorption
due to inverse bremsstrahlung and the ponderomotive force term. The remaining terms going
beyond those coming from the Fuler equations involve the non-local transport coefficients

which are only known in k-space. From the numerical point of view this implies that a

9



splitting scheme has to be employed in order to evaluate the transport. The transport is
treated as a source for the Euler equations which is evaluated in Fourier space. The coupling
therefore requires the transfer of quantities between the k-space on an Eulerian grid and the
real-space on a Lagrangian grid. This leads to nontrivial numerical issues of coupling very
different numerical schemes.

The non-local transport results from a linearization of the full Fokker-Planck equation and
is nevertheless used in a nonlinear hydrodynamics. This is however justified as comparisons
with kinetic calculations have shown that this approach remains valid even in the weakly
nonlinear regime (Brunner and Valeo [5, 6]). The present model is one of several available
in the literature. Comparison with other models (Alouani-Bibi and Matte [1], Schurtz et
al. [18]) is needed to better understand their robustness and the limits of validity.

IV. VALIDATION OF THE CODE

Comparison with other codes and with experiments is an important part of the code
development. The present code has already passed successfully certain tests. Here we
present a comparison of the code with the results of a recent experiment on the plasma

induced laser beam smoothing.

A. Experiment on the plasma-induced incoherence

The experiment looked at the time-resolved transmitted light of a RPP laser beam passing
through a preformed plasma (Malka et al. [14]). An enhanced spatiotemporal smoothing
of the laser beam was observed, Fig. 3. The plasma induced smoothing of a laser beam has
been observed before albeit under very different conditions where self-focusing of the beam
played an important role. In these experiments however the average power in a speckle was
of the order of 3% of the critical power for self-focusing. An important parameter is the
measured coherence time which in the experiment was of the order of 50 ps. The mechanism
which was put forward to explain the loss of coherence induced by the plasma is multiple
scattering. Even without self-focusing the presence of the ponderomotive force creates small
density perturbations. The incident light is then scattered off these density perturbations

which leads to an angular spreading of the light cone and to a loss of spatial and temporal
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coherence. The characteristic time constant should therefore be given by the transit time for
the speckle width. The random phase plate produced speckles with a characteristic radius of
2.8 um. For a plasma temperature of 7, = 250 eV the acoustic velocity is ¢; = 0.06 pm/ps.
The resulting acoustic transit time is therefore ¢,. = 50 ps which agrees with the measured

coherence time.

B. Calculations of the plasma-induced incoherence

In the following some calculations are presented which allow a code validation for the
simplest configuration of the code: linear plasma response with non-local transport. This
is justified as the experimental conditions were such that the level of backscattering was
without significance and the laser intensity (I) ~ 6 x 10'* W/cm? and plasma density
(ne = 0.01n.) such that the plasma response could be described by an TAW response. The
results are summarized in Figs. 4, 5 and 6.

Figure 4 shows increasing fluctuations of the laser intensity as function of the plasma
length implying an increasing loss of coherence. The variation of the laser intensity AI/T

was calculated as follows:

AL =/{(I(z,1) = Io(2))?): (22)
where Io(z) = (I(z,t)); and T = ({(I(2,t));)s. The temporal and spatial average are defined
as (...)y = T7 [ I(z,t)dt and (...); = L™ [ I(z,t)dz, respectively. Here, L is the plasma
length and 7' the duration of the simulation.

The condition for multiple scattering to take place in the plasma can be shown to be [14]:

2 2
(1 + §—3> (%Z—) K2LLp > 1 (23)
where Lp = kop? the Rayleigh length. The term in the left bracket takes into account the
effect of the non-local transport as the speckle radius py = 2.8 pm is of the order of the mfp
Aei = 4 pm.

The important parameter is the plasma length L which in the experiment was of the
order of 2 mm. Even for very low intensities and densities laser beam smoothing can be
achieved if the light interacts with a sufficiently long plasma. The calculation shows (see
Fig. 5) clearly that the intensity profile is stationary the first one mm of the plasma before

slow variations on the time scale of the ion-acoustic transit time set in. In a similar way Fig.

11



6 shows an arbitrary transverse intensity profile at the beginning of the plasma and after
the light propagated through 2 mm of plasma. At the beginning of the plasma the profile
does not change and remains strongly correlated for all times. In the contrast, the initial
correlation has been completely destroyed at the end of the simulation box.

The physical effect taking place is the following sequence: the stationary random phase
structure of the incident laser beam leads to non-stationary density perturbations and sub-

sequently multiple scattering of the light takes place.

V. CONCLUSION

A code has been presented which was conceived to model the interaction of a paraxial
laser beam with a preformed plasma in the context of inertial confinement fusion. The code
structure requires the coupling of very different numerical modules which are optimized each
for specific physics applications. This module coupling plus the fact that one operates in
parallel on the Eulerian and Langrangian grids is non-trivial. The code has been optimized
with respect to this coupling and has been validated qualitatively and quantitatively in
the linear regime using experimental data on plasma-induced smoothing. The next step is
the validation of the nonlinear plasma response for smoothing under conditions of strong
self-focusing.

One has to be aware of the fact that a macroscopic calculations of LPI using a nonlinear
plasma response are very demanding as far as CPU time is concerned. A linear plasma
simulation which models roughly 1/8th of the LMJ beam requires of the order of one day
on 40 processors at 833 MHz. Performing the same calculation using the fully nonlinear
plasma response and the most relevant nonlocal transport terms adds a factor 10 — 20 to the
CPU time. Hence, the nonlinear macroscopic calculations can only be done on high-speed,
massively parallel machines.

The present code can be considered a first but large step forward to a macroscopic
modelling of laser-plasma interactions. The various minimal ingredients for a realistic physics
basis have been presented. However, this is still far from what one needs in a long run.
Missing components are for example: the backscattering processes (SRS and SBS), the
expansion of the plasma in the parallel direction, a non-local transport model that would

be valid in the strongly nonlinear regime.

12



Once the code has been decently validated by interpreting and reproducing present ex-

perimental data it can be used for predictive modelling of the forthcoming plasmas in the

large-scale installations LMJ and NIF.
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FIG. 1: Time evolution of a mono-speckle for I = 6 - 10'* W/cm?, n, = 0.1n, and T, = 600 eV.
The snapshots are taken at 17.5, 22.5 and 30.0 ps. The upper row presents the results of the linear
plasma response, the lower one the full nonlinear calculation. The nonlinear calculation includes

only the ponderomotive force as coupling term, not the non-local transport.
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FIG. 2: The electron heat conductivity k. as a function of kA.;. For kA.; — 0 one recovers the

standard collisional transport value; the limit kA.; > 1 corresponds to the collisionless regime.
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FIG. 3: Time resolved images of transmitted light using a RPP during 600 ps for 100 pgm spatial

extension. Left: with plasma, right: in vacuum.
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FIG. 4: The increasing fluctuations of the laser intensity as function of the plasma length. The
curve is the mean value of 32 randomly chosen points in the transverse plane. The additional lower

and upper curve give the mean square deviation of the values.
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FIG. 5: Temporal evolution of the central intensity. The intensity depicted is in units of 1.85 x 10'*
W/cm?.
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FIG. 6: The transverse intensity distribution for the RPP-case in an arbitrary point in the trans-
verse plane. Left column: entrance of simulation box (z = 0); right column: end of simulation box

(z = 2240 pm). Upper row: at ¢ = 0; lower row: at ¢ = 100 ps.
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